According to this theorem, if there are a number of e.m.fs. acting simultaneously in any linear bilateral network, then each e.m.f. acts independently of the others i.e. as if the other e.m.fs. did not exist. The value of current in any conductor is the algebraic sum of the currents due to each e.m.f. Similarly, voltage across any conductor is the algebraic sum of the voltages which each e.m.f would have produced while acting singly. In other words, current in or voltage across, any conductor of the network is obtained by superimposing the currents and voltages due to each e.m.f. in the network. It is important to keep in mind that this theorem is applicable only to linear networks where current is linearly related to voltage as per Ohm’s law.
Sunday, 27 June 2021
Superposition Theorem
Hence, this theorem may be stated as follows :
"In a network of linear resistances containing more
than one generator (or source of e.m.f.), the current which flows at any point is the sum of all the
currents which would flow at that point if each
generator where considered separately and all the
other generators replaced for the time being by
resistances equal to their internal resistances.''
Explanation
In Fig. 2.95 (a) I1, I2 and I represent the values of currents which are due to the simultaneous action of the two sources of e.m.f. in the network. In Fig.
2.95 (b) are shown the current values which would have been obtained if left-hand side battery had
acted alone. Similarly, Fig. 2.96 represents conditions obtained when right-hand side battery acts
alone. By combining the current values of Fig. 2.95 (b) and 2.96 the actual values of Fig. 2.95 (a) can
be obtained.
Obviously,
Subscribe to:
Post Comments (Atom)
No comments:
Post a Comment
If you have any doubts, Please let me know.